18 Şubat 2008 Pazartesi

Rasyonel Sayılar

RASYONEL SAYILAR
A. TANIM
a ve b tam sayı, b eşit değildir 0 olmak üzere, a/b şeklinde ifade edilen sayılara rasyonel sayı veya kesir denir.









B. KESİR ÇEŞİTLERİ
1. Basit Kesir

İşaretine bakılmaksızın payı paydasından küçük olan kesirlere basit kesir denir.










2. Bileşik Kesir

İşaretine bakılmaksızın payı paydasından küçük olmayan (büyük veya eşit olan) kesirlere bileşik kesir denir.


3. Tam Sayılı Kesir


Herhangi bir sayma sayısı ile birlikte yazılabilen kesirlere tam sayılı kesir denir.

birer tam sayılı kesirdir.
Her bileşik kesir bir tam sayılı kesir biçiminde yazılabilir.









C. RASYONEL SAYILARDA İŞLEMLER

1. Genişletme ve Sadeleştirme

k ¹ 0 olmak üzere,




2.Toplama - Çıkarma

Toplama ve çıkarma işleminde payda eşitlenecek biçimde kesirler genişletilir ya da sadeleştirilir. Oluşan kesirlerin payları toplanır (ya da çıkarılır) ortak payda alınır.




3.Çarpma - Bölme


















4. İşlem Önceliği

Toplama, çıkarma, çarpma, bölme ve üs alma işlemlerinden bir kaçının birlikte bulunduğu rasyonel sayılarda işlemler, aşağıdaki sıraya göre yapılır.
1) Parantezler ve kesir çizgisi işleme yön verir.
2) Üslü işlemler varsa sonuçlandırılır.
3) Çarpma - bölme yapılır.
4) Toplama - çıkarma yapılır.

Toplama ile çıkarma ve çarpma ile bölme kendi arasında öncelik taşımaz. Özellikle çarpma ile bölmede öncelik söz konusu ise bu, parantezle belirlenir.


D. ONDALIK KESİR

1. Ondalık Kesir
Bir rasyonel sayının payını paydasına böldüğümüzde bu rasyonel sayının ondalık açılımını buluruz. Bu ondalık açılıma ondalık kesir denir.




Burada a ya tam kısım, bcd ye de ondalıklı kısım denir.


2. Devirli (Periyodik) Ondalık Kesir
Bir ondalık kesirde ondalıklı kısım belli bir kurala göre tekrarlanıyorsa bu sayıya devirli ondalık kesir denir.
Devreden kısım üzerine (—) işareti konulur.





3. Ondalık Sayılarda İşlemler

a. Toplama - Çıkarma: Ondalık kesirler toplanırken, virgüller alt alta gelecek şekilde yazılır ve doğal sayılarda toplama - çıkarma işleminde olduğu gibi toplama - çıkarma işlemi yapılır. Sonuç, virgüllerin hizasından virgülle ayrılır.

b. Çarpma: Ondalık kesirlerin çarpımı yapılırken, virgül yokmuş gibi çarpma işlemi yapılır. Sonuç, çarpılan sayıların virgülden sonraki basamak sayılarının toplamı kadar, sağdan sola doğru virgülle ayrılır.

c. Bölme: Ondalık kesirlerin bölme işlemi yapılırken, bölen virgülden kurtulacak biçimde 10 un kuvveti ile çarpılır. Bölünen de aynı 10 un kuvveti ile çarpılarak normal bölme işlemi yapılır.

4. Devirli Ondalıklı Sayının Rasyonel Sayıya Dönüştürülmesi










Devreden 9 ise bir önceki rakam 1 artırılır.
E. RASYONEL SAYILARDA SIRALAMA

Pozitif kesirlerde sıralama yapılırken aşağıdaki yollardan biri kullanılır.
I. Yol:
Paydaları eşit olan (eşitlenen) kesirlerden payı en büyük olan diğerlerinden daha büyüktür.
II. Yol:
Payları eşit olan (eşitlenen) kesirlerden paydası en küçük olan diğerlerinden daha büyüktür.
III. Yol:
Payı ile paydası arasındaki farkı eşit olan, basit kesirlerde, payı en büyük olan diğerlerinden daha büyüktür.

Payı ile paydası arasındaki farkı eşit olan, bileşik kesirlerde, payı en büyük olan diğerlerinden daha küçüktür.
Yukarıda verilen yöntemler pozitif kesirlerde geçerlidir. Negatif kesirlerde ise durum tersinedir.


F. İKİ RASYONEL SAYI ARASINDAKİ SAYILAR




arasında sayılamıyacak çoklukta rasyonel sayı vardır.


Bunlardan bazılarını bulmak için b ile d nin OKEK i bulunur. Verilen kesirlerin paydaları bulunan OKEK inde eşitlenir. İstenen koşuldaki sayıyı bulmak için kesirler genişletilebilir.
kesirlerinin ortasındaki bir sayı ise,

17 Şubat 2008 Pazar

Çarpım Tablosu

Çarpım Tablosu

OyunlarOyna.NET; Ücretsiz Oyun ve Arkadaşlık Merkezi.

Sudoku

Sudoku

OyunlarOyna.NET; Ücretsiz Oyun ve Arkadaşlık Merkezi.

Jean Le Rond D'Alembert




Jean Le Rond d'Alembert adı, Notre Dame de Paris yöresinde küçük bir kilisenin adı olan Saint-Jean-Le Rond'tan gelmektedir. Chevalier Destouches'in gayri meşru oğlu olan d'Alembert, annesi tarafından gizlice Saint-Jean-Le Rond kilisesinin basamaklarına bırakılmıştı.

Çocuğu sabahın erken saatlerinde kilisenin basamakları üstünde mışıl mışıl uyurken, kiliseye gelen papaz buldu. Hava oldukça da karanlıktı. Sabahın soğuğu iliklerine kadar işlemişti. Kilise avlusunun kapısını açtı ve yavaş adımlarla merdivenlere doğru yaklaştı. Basamakların üzerinde karanlık bir şey gördü. Köpek veya yabani bir hayvan olabileceğini düşündü ve biraz da korktu. Biraz daha yaklaşınca karartının hareket etmediğini ve hayvan olmadığını anladı. Kafasından bazı düşünceler bir film şeridi gibi süratli bir biçimde geçti. Acaba bu ne olabilirdi? Merdivenlere doğru tırmandı ve karartıyı artık iyice seçebiliyordu. Örtünün bir ucunu kaldırdı. Bir de ne görsün, minicik bir yavrucak annesinin sütünü yeni emmiş gibi mışıl mışıl uyuyordu. Yüzünün açılmasıyla sabahın soğuğu ciğerlerine kadar girdi. Arka arkaya bu temiz havayı burnundan çekti ve bol bol oksijeni teneffüs etti. Soğuk onu biraz rahatsız etti. Hava da iyice aydınlanmıştı. Çocuğun yüzü iyice fark edilebiliyordu. Yavaşça kucağına aldı ve merdivenlerin basamaklarını dikkatlice çıktı. Cebinden çıkardığı anahtarla kapıyı açtı ve bir eliyle de bebeği uyandırmamak için tüm gayretlerini harcadı. Kendi odasına girdi. çocuğu masanın üzerine yatırdı. Kilisenin içi de soğuktu. Sobayı yaktı ve odayı ısıttı. Bu tatlı ve güzel bebek uyandığında saat 10'u geçiyordu.

Belediye ilgilileri, çocuğu fakir bir camcının karısına verdiler. Bu hayırsever, fakir fakat sevgisi ve şefkati zengin olan kadın da bu küçücük ve kimsesiz yavruya kendi çocuğu gibi baktı ve büyük bir dikkatle onu büyüttü. Daha sonra annesinin ve babasının kim olduğu anlaşıldıysa da bu iyilik sever kadından çocuğu ne almaya ne de istemeye gelen oldu. Yalnız, Chevalier, o zamanın kanunlarına göre gayri meşru oğlunun eğitim ve öğretim parasını ödemeye mecbur edildi. Kilise de peşini bırakmıyordu. Bu olayı ve bu aileyi d'Alembert büyüyünceye kadar öğrenemedi. Kendi annesi ve babasından daha ileri sevgi ve şefkatle büyütüldü. Oldukça da sıhhatli ve gürbüzdü.

D'Alembert'teki matematik dehası uyanmaya başlayınca, oğlunun oturduğu yeri ve evi bilen öz annesi onu memnuniyetle yanına alacağını ve bakacağını bildirdi. Küçük ve akıllı d'Alembert, "Sen benim üvey annemsin. Camcının karısı benim asıl annemdir" diyerek onun bu önerisini geri çeviriyordu. Onu dünyaya getiren öz annesi ve babası gibi, o da onları unuttu. Bir daha da adlarını andığı görülmedi. Onun annesi ve babası, o fakir camcı ve onun karısıydı.

D'Alembert ünlü olduğu zaman bu ailesini unutmadı. Kendisine bakan, onların sevgileriyle büyüyen camcının ailesini kendi ailesi olarak kabul ettiğinden, fakir olan bu ailenin rahatlık içinde yaşamalarını sağladı. Bu aile yine kendi küçücük evlerinde kalmayı uygun buldular. D'Alembert'te manevi anne ve babası olan camcı ailesini öz annesi ve öz babası ilan etti. Yaşam süreci boyunca da onlarla övündü ve onlara baktı.

D'Alembert artık bir saray matematikçisi ve ünlü biriydi. Gece ve gündüzlerin uzaması veya kısalması probleminin çözümünü tam olarak d'Alembert verdi. En önemli eseri, parçalı diferansiyel denklemler üzerinedir. Özellikle, titreşen tellere ait buluşu çok önemlidir. Serilerin yakınsaklığına ait d'Alembert ölçütü onundur. Kendi adıyla anılan çok sayıda teoremleri vardır.

D'Alembert, genç dostu Lagrange'ı güç ve önemli problemleri çözmeye yöneltiyor, olanaklar ölçüsünde ona bir ağabey gibi davranıyordu. Beraber bir arada olduklarında sözlerle ve ayrı olduklarında da mektuplarla, mide rahatsızlıkları olan Lagrange'a önerilerde bulunuyordu. Mekanikte çok önemli buluşları olan Fransız matematikçisi d'Alembert'in, dalga denklemi ve bu problemin kendi adıyla bilinen çözümü ünlüdür.

D'Alembert'i yaşatan en önemli buluşlarından biri de biraz önce adını andığımız d'Alembert ya da genel matematikte adı çok geçen bölüm ölçütüdür. Sonsuz terimli serilerin yakınsaklığı, yakınsaklık bölgesini ve yakınsaklık yarıçapını bulmak için bundan daha kullanışlı bir formül bulunamamıştır. Yine bu ölçütle, serilerin analitik bölgelerini kolayca bulabiliriz. D'alembert, genel matematiğin kurucularından biri olarak bilinir ve biri olarak kabul edilir.

Pascal



Pascal, 19 Haziran 1623 günü Fransa'da Clermont'ta doğdu. Babası kültürlü bir adamdı. Pascal yedi yaşına gelince, babası Paris'e yerleşti. Yedi yaşına gelen parlak çocuk öğrenimine başladı. Kendisi gibi çok güzel ve kültürlü iki kız kardeşi vardı. Özellikle Jak Qualine, Pascal'ın yaşamında önemli rol oynamıştır. Kız kardeşinin bu etkisi bazen iyi, fakat çoğu kötü yönde olmuştur.

Pascal doğduğunda, Descartes yirmi yedi yaşındaydı. Descartes öldükten sonra Pascal daha on iki yıl yaşadı. Newton'dan sadece birkaç yıl önce doğmuştur. Descartes ve Fermat gibi büyük matematikçilerle çağdaş olması bir yerde kendisi için bir şanssızlıktı. Bu nedenle, tek başına oluşturabileceği olasılıklar kuramının keşfini Fermat'la paylaştı. Kendisini harika çocuk diye ünlü yapan yaratıcı geometri fikrini, kendisinden daha az ünlü olan Desargues'dan esinlendi. Daha çok din ve felsefe konularına eğildiği için matematiğe az zaman ayırdı. Kız kardeşi ona bu konuda egemendi. Buna karşın, yapabileceğinin çok daha fazlasını verdi.

Pascal, çok erken gelişen bir çocuktu. Fakat, vücutça oldukça zayıftı. Bunun tersine, kafası çok parlaktı. Öğrenimi başlangıçta çok başarılı geçiyordu. Çok küçük yaşta olmasına rağmen, matematiğe gösterdiği ilgi çok dikkati çekiyordu. Hatta, matematik problemleriyle gece gündüz uğraşmaya başladı. Sağlığının bozulacağından kuşkulanan babası, bir aralık onun matematik çalışmasına engel olduysa da, onun bu davranışı Pascal'ın matematik çalışmasına daha çok yöneltti. Geometri çalışmak için oyunlarını bıraktı. On iki yaşında babasına, geometrinin ne dernek olduğunu sordu. Euclides'in "Elements" adlı geometri kitabını kısa bir zaman içinde yutarcasına bir roman gibi okudu.

Hiç bir yardım görmeden ve hiç bir geometri okumadan, çok küçük yaşta bir üçgenin iç açılarının toplamının 180 derece, yani iki dik açı olduğunu kanıtlamıştır. Daha önce, hiç bir kitabı okumadan, Euclides'in birçok önermesini ispatlamıştı, Yine, Pascal hakkında abartma yapmaktan özellikle kaçınan kız kardeşi Gilbert'in anlattıklarına göre; Pascal Euclides'in ilk otuz iki önermesini Elements adlı kitabındaki sıraya göre bulmuştur. Otuz ikinci önerme ise, bir üçgenin iç açılarının toplamı ile ilgili ispatıdır.
Pascal on dört yaşına gelince, Mersenne tarafından yönetilen ilmi tartışmalara kabul edildi. Bu tartışmaların yapılması, Fransız İlimler Akademisini doğurdu. Pascal kendi kendine bir geometrici olmuştu. Baba Pascal'ın hükümet makamlarıyla boğuşması aileyi kötü duruma düşürdü. Güzel ve parlak kız kardeşi Jacqueline, vergi konusunda babası ile anlaşmazlığa düşen Cardinal de Richelieu'yu eğlendirmek için, önünde oynatılan bir oyunda kendisini tanıtmadan oyuna çıkar. Kendini hayran eden artistin kim olduğunu öğrenen Cardinal, tüm aileyi bağışlar ve ondan sonra baba Pascal'a bir memurluk verir.

Pascal, on altı yaşından önce, 1639 yılında, geometrilerin en güzel teoremini ispat etti. On dokuzuncu yüzyılda yaşayan İngiliz matematikçisi ünlü Sylvester, Pascal'ın bu büyük teoremine "kedi beşiği" adını vermiştir. Pascal, on bir yaşına gelince sesler hakkında bir eser vermiştir. On altı yaşındayken, konikler üzerine bir eser yazarak, ünlü Descartes'i hayretlere düşürmüştür. On sekiz yaşına gelince, şimdi Paris sanayi müzesinde saklanan hesap makinesini bulmuştur. Fizikte, havanın ağırlığını, sıvıların denge halini ve basıncı hakkında Pascal kanunlarını bulmuştur. Apollonius ve başkalarının çalışmalarını birer sonuç kabul eden dört yüz tane önerine ortaya koymuştur. Bu eserin tümü basılamadığı için, bir daha da ele geçmemek üzere kaybolmuştur. Fakat, Leibniz bu eserin bir kopyasını görmüş ve onu inceleme şanslılığına ermiştir. Pascal'ın bu eseri geometrik bir metrik olmayıp bir izdüşüm geometrisidir. Aristo, matematiği çokluklar ilmi diye tanımlıyordu. Oysa Pascal'ın geometrisinde çokluk yoktur.

Pascal, on yedi yaşından ölümü olan otuz dokuz yaşına kadar ızdırapsız ve acısız gün görmedi. Hazımsızlık, mide ağrıları, uykusuzluk, yan uyuklamalar ve bu ağrıların verdiği gece kabusları onu yedi bitirdi. Böyle olmasına karşın, yine de bu ağrılar içinde durmadan çalışıyordu.

Yirmi üç yaşlarında, kız kardeşinin baskı ve etkisiyle Hıristiyan dinine ve bunun içinde bazı tarikatlara girdi. Bu konuda epey sarsıntılar da geçirdi. Fakat, yine onda matematik ağır bastı. Pascal, hurma ağaçları gibi tepeden kurumaya başladı. Aynı yıl hazım organları bozuldu. Bu ara geçici bir felç geçirdi. Bu ona çok ağrılar verdi. Her şeye rağmen, düşüncesi ve kafasının çalışmaları sürüyordu.

1648 yılında Toriçelli'nin (1608 -1647) çalışmalarını inceleyerek, onun da önüne geçti. Yükseklikle basıncın değiştiğini saptadı. Descartes, Pascal'la çeşitli konuları konuşmak ve özellikle barometre hakkında bilgi almak için geldi. Bu iki bilginin yaradılış ve ruhsal durumları pek uyuşmuyordu. Descartes, konikler üzerine yazılan eserin on altı yaşında bir çocuk tarafından yazıldığına inanmayı açıkça kabul etmedi. Daha da ileri giderek, Pascal'ın barometre deneyleri düşüncesini, Mersenne'nin çalışmalarından çalmış olmasından şüphelendi. Descartes'le Pascal'ın aralarında çekememezliğe neden olan üçüncü konu din üzerine olan düşüncelerindeki ayrılıklardı. Descartes Cizvitleri tutuyor, Pascal'sa Jansen'in mezhebini savunuyordu. Pascal'ın açık sözlü kız kardeşi Jacqueline'nin sözlerine bakılırsa, bu iki dahi birbirlerini oldukça kıskanıyorlardı. Bu nedenle de, adı geçen yukarıdaki görüşme ve ziyaret soğuk bir buluşma olmuştu. Descartes'in genç dostuna bazı öğütleri oldu. Pascal da onu ciddiye almadı. 1658 yılının bir gecesinde, uykusuzluk ve diş ağrılarından kıvranan Pascal, kerpetenin egemen olduğu bir zamanda, korkunç ağrılarını unutmak amacıyla, birçok ünlü matematikçinin uğraştığı zarif sikloid eğrisine daldı. Tüm ağrılarının geçtiğini gördü. Ya da, sikloid üzerine o kadar daldı ki, tüm ağrı ve acılarını unuttu. Tam sekiz gün sikloid geometrisi üzerinde çalıştı. Bu eğri ile ilgili olan çeşitli problemleri çözmeyi başardı. Bu buluşlarının bazılarını takma Amos Detonville imzasıyla, Fransız ve İngiliz matematikçilerine meydan ,okumak amacıyla basılmıştır. 1658 yılında kendini oldukça hasta hissetti. Kısa aralıklarla gelen uyuklamalar dışında, şiddetli ve dinmek bilmeyen baş ağrıları ona çok eziyet ediyordu. Tam dört yıl bu ağrılarla kıvrandı. 1662 yılının haziran ayında otuz dokuz yaşındayken öldü. Ölümünden sonra yapılan otopsisinde, ağrılarının nedeninin ciddi bir beyin hastalığından ileri geldiği saptandı.

Pascal, Fermat ile birlikte olasılıklar kuramını kurmakla, yeni bir matematik dünyası yaratmış oluyordu. Bu kuramın tüm inceliklerini ortaya döktü. Bu kuramı oluştururken, Fermat'la sürekli haberleşmişlerdir. Yapılan bu mektup görüşmeleri incelendiğinde, bu kuramın gerçek kurucularının Pascal ile Fermat'ın eşit payları olduğu görülür. Yaptıkları şeyler temelde aynı, fakat derinlemesine inilmeleri ayrı ayrıdır. Bu arada Pascal'ın düştüğü ufak hatayı Fermat belirtince, Pascal da bu hatasını hemen düzeltti. Bu haberleşmedeki ilk mektuplar kaybolmuşsa da, daha sonraki mektuplar hala eldedir.

Bu büyük olasılıklar kuramının çıkış nedeni, Pascal'a kumarbaz Chevalier de Mere tarafından önerilmesiydi. En önemli görevi de elli iki kağıt oyunu oynuyordu. Bu ara tavla zarlarının, şekilleri aynı olan ayrı renkli bilyelerin önemi büyüktür. Buna bağlı olarak, ünlü Pascal üçgeni doğdu. Pascal'ın bu üçgeni, daha sonraki yıllarda çok kullanıldı. Özellikle seri açılımları ve binom açılımı bu yöntemle kolaylıkla bulunur.


1
11
121
1331
14641


Pascal üçgeni, binom açılımındaki katsayıları bulmaya yarar. Pascal'ın bu üçgeni, olasılıklar kuramında da ustalıkla kullanılır. Bu üçgen, biyolojideki uygulamalar, matematik, istatistik ve pek çok modern fizik konularında uygulama alanı bulunur.

Hermann Minkowski



Litvanya'lı bir matematikçi olan Hermann Minkowski, 1864 yılında Aleksotas'te doğdu. 1896 ile 1902 yılları arasında Zürih Federal Politeknik Okulunda ve ölünceye kadar da Göttingen Üniversitesinde profesörlük yaptı. 1882 yılında, tam katsayılı ikinci dereceden şekiller kuramının temelleri üstüne inceleme yazısıyla Fen Akademisinin büyük matematik ödülünü aldı. Euclides olmayan geometriyle karıştırılmaması gereken bir sayılar geometrisi kurarak sayılar kuramına bazı geometrik kavramlar getirdi. Sonunda özel bir metrikle donatılmış dört boyutlu özel bir uzaya başvurarak, Einstein'in kısıtlı bağlılık kuramının, bugün klasik sayılan geometrik bir yorumunu verdi. Buna Minkowski uzay zamanı denir. Sayılar geometrisi, 1896 yılında basıldı. 1907 yılında "Diophantus Yaklaşımları" adlı eseri yayınladı. "Çalışmalar" adlı yapıtı da 1911 yılında çıktı. Analizin birçok dalında Minkowski eşitsizliği kullanılır. Kendisi, 1909 yılında Göttingen'de öldü.

16 Şubat 2008 Cumartesi

Isaac Newton


1642 yılında İngiltere'nin Woolsthrope kasabasında dünyaya gelen Newton'un en önemli buluşu, diferansiyel ve integral hesabı keşfetmesidir. Zaten Newton'u dünyada gelip geçmiş üç büyük matematikçiden biri yapan buluşu budur. İşin teknik yönü, üniversitelerde uzun uzun verilir. Bu nedenle, sadece adı bizim için şimdilik yeterlidir. Newton, bir ara teolojiye de ilgi duydu. Bu konuda bazı yorumları ve düşünceleri de vardır.

Newton, 1661 yılının haziran ayında Cambridge'deki Trinity College'e girdi. Giderlerinin bazılarını karşılamak için okulda bazı işlerde çalışıyordu. İç harp İngiltere'de tüm şiddetiyle sürüyordu. Önceleri yavaş, fakat sonraları çabuk olarak kendini toparladı ve çalışmalarına daldı.

Newton'un matematik öğretmeni Isaac Barrow (1630 - 1677), hem ilahiyatçı ve hem de matematikçi biriydi. Matematikte parlak fikirli olan Barrow, öğrencisinin kendisinden çok ileride olduğunu kabul ediyor ve 1669 yılında matematik kürsüsünü bırakıp sırası gelince, yerini o eşsiz büyük deha Newton'a bırakıyordu.

Barrow, geometri derslerinde kendine özgü yöntemlerle, alanları hesaplamak, eğrilere üzerindeki noktalardan teğet çizmek için yollar gösteriyordu. İşte bu dersler Newton'u diferansiyel ve integral hesabı bulmaya ve bu sahada çalışmaya yönelten ilk adımlardır.

Diferansiyel ve integral hesabın bulunmasında, değişken, fonksiyon ve limit kavramı kullanılmıştır. Fonksiyon kelimesini ilk kez Leibniz kullanmıştır. Bugüne kadar da bu sözcük değiştirilmemiştir. Limit fikrini ve kavramını Newton ve Leibniz kullanmıştır. Özellikle Newton bu sahada başarılı olmuştur. Her ikisi de çok yönlü olan bu dahiler, aynı zamanda birbirlerinden habersiz az çok farklılık gösteren yöntemleriyle diferansiyel ve integral hesabı bulmuşlardır.

Isaac Newton, 1727 yılında böbreklerindeki rahatsızlık yüzünden yaşamını yitirdi.

Pisagor


Pisagor (M.Ö. 596 - 500)Samos'lu Pisagor'un, Milattan önce 596 yıllarında doğduğu tahmin ediliyor. Doğumu gibi ölüm tarihi de kesin değildir. Bugünkü adıyla bilinen Sisam Adasında 596 veya 582 yılında doğmuştur. Hayatı hakkında çok az bilgiler vardır. Bu bilgilerin birçoğu da kulaktan kulağa söylentiler biçiminde gelmiştir. Fakat, önceleri doğduğu yer olan Sisam Adasında okuduğu, daha sonraları Mısır ve Babil'e giderek oralarda bilgilerini ilerlettiği ve ülkesine geri dönerek dersler verdiği söylenir. Kendisinden önceki bilgilerin tümünü öğrenmiş ve derlemiştir. Kendisi, bir Yunan filozofu ve matematikçisidir. Ülkesinde hüküm süren politik baskılardan kaçarak, İtalya'nın güneyindeki Kroton şehrine gelmiş ve ünlü okulunu burada açarak şöhrete kavuşmuştur. Yarı söylentilere göre felsefe okulunun kurucusudur. Bu okul aynı zamanda dini bir topluluk ve o zamanın politikasına oldukça egemendir. Yine söylentilere göre, Pisagor'un matematik, fizik, astronomi, felsefe ve müzikte getirmek istediği yenilik, buluşlar ve ışıkları hazmedemeyen bir takım siyaset ve din yobazları halkı Pisagor'a karşı ayaklandırarak okulunu ateşe vermişler, Pisagor ve öğrencileri bu okulun içinde alevler arasında M.Ö. 500 yıllarında ölmüşlerdir. Bu nedenle Pisagor ve yaptıkları hakkında az bilgiler bize kadar gelmiştir. Pisagor'un ve öğrencilerinin yaptıklarının birçoğu bu alevler arasında yok olup gitmiştir. Pisagor, M.Ö. altıncı yüzyılda, dünyanın güneş etrafında hareket ettiğini ileri sürdüğü zaman oldukça sert olan bir hareketle karşılaşmıştır. O tarihlerde kağıt olmadığı için, bu buluşlarını nasıl elde edildiği, yine bu devirlerdeki bilgilerin hangisinin Pisagor'a ait olduğu kesin olarak bilinmemektedir. Hatta, okuldaki öğretim araçlarının masa üzerindeki ıslak kum olduğu söylenir. Bu koşullar altındaki ilmi gerçeklerin tümü o zaman yazıya geçmediği için, birçoğu da zamanla kaybolup gitmiştir. Bu nedenle, Pisagor'un okulu ve öğrencileri ile birlikte yanmalarından, eser bırakıp bırakmadığı da kesin olarak belli değildir. Geometride, aksiyomlar ve postülatlar her şeyden önce gelmelidir. Sonuçlar bu aksiyom ve postülatlardan yararlanılarak elde edilmelidir düşüncesini ilk bulan ve ilk uygulayan matematikçi Pisagor'dur. Matematiğe aksiyomatik düşünceyi ve ispat fikrini getiren yine Pisagor'dur. Çarpma cetvelinin bulunuşu ve geometriye uygulanması, yine Pisagor tarafından yapıldığı söylenir. En önemli buluşlarından biri de, doğadaki her şeyin matematiksel olarak açıklanması ve yorumlanması düşüncesidir. Yaşayış ve inanışı, ilimle açıklama ve yorumlamayı o getirmiştir. Müzik üzerine de çalışmaları vardır. Müzik tonlarının, telin uzunluğunun oranlarına bağlı olduğunu keşfetmiş ve bunun tüm sayılara yorumlamasını düşünmüştür. Bir yerde bugünkü gerçel ekseni söylemeden düşünmüştür. Bu da, bugünkü kullandığımız gerçel eksenin sayı sisteminde kullanılmasından başka bir şey değildir. Fakat, eski Yunan matematikçileri gerçel sayıları bilmiyorlardı. O zamanlar, rasyonel sayıları uzunlukları ölçmek için kullanıyorlardı. Bunun için belli bir birim alıyorlar ve bu birime oranlayarak iki nokta arasındaki uzunluğu ölçüyorlardı. Rasyonel sayılarla ölçülemeyen uzunluğun keşfi 2600 yıl önce Yunan matematikçileri tarafından olmuştur. Bu sonuçta, halen değerini koruyan ve koruyacak olan ünlü Pisagor teoremine dayanır. Pisagor teoremi, matematikteki en büyük buluşlardan biridir. Hele zamanımızdan 2600 yıl önce bulunduğu göz önüne alınırsa, bundan daha büyük bir buluş düşünülemez. Pisagor'un adını 2600 yıldır andıran, onu ünlü yapan ve insanlığın varolduğu sürece de sonsuza kadar da andıracak meşhur teoremi şudur: Bir dik üçgende, dik kenarlar üzerine kurulan karelerin alanlarının toplamı, hipotenüs üzerine kurulan karenin alanına eşittir.Pisagor teoremi, rasyonel sayılarla ölçülemeyen uzunluğun da varolduğunu gösterir. Örneğin, yukarıdaki şekilde olduğu gibi, dik kenarları birer birim olan dik üçgeni göz önüne alalım. Geometrik olarak, bu özel hal için, Pisagor teoremi gerçeklenir. Yani, büyük karenin alanı, dik kenarlar üzerine kurulan karelerin alanları toplamıdır. Diğer bir deyimle, x2=2 olur. Bu denklemin kökü de rasyonel olmayan karekök 2 uzunluğudur. Yunan matematikçileri gerçel sayılan bilmiyorlardı. Üstün zekalı Eudoxos tarafından bulunan oranlama yöntemini kullanıyorlardı. Aslında, gerçel sayıların oluşumu kavramı bir ya da birçok insanın buluşu değildir. Rasyonel sayıların günlük hayatta kullanılması sırasında kendi kendine gelişmiştir. On tabanına göre sayıların sayılması ve yazılması, büyük bir olasılıkla iki eldeki parmakların sayılmasından doğmuştur. Şu sırada bile ilkel yaşam sürdüren bazı kabilelerde buna benzer sayma yöntemi vardır. On tabanına göre sayıların yazılması ve okunması, Avrupa'ya Crusades'ten sonra Arap dünyasından gelmiştir. Bunu Araplar Hintlilerden, Hintliler de Helen medeniyetinden aldılar. Yunan'lı astronomlar bu sayı sistemini, M.Ö. 1500 yıllarından beri kullanan, Babil'lilerden almışlardır. "Evrenin hakimi sayıdır. Sayılar evreni yönetiyor" sözleri de Pisagor'a aittir. Pisagor, Archimedes'ten oldukça farklıdır. Pisagor hem mistik ve hem de matematikçidir. Mistik tarafları çoktur. Bunlar, efsaneleşmiş bir biçimde destan olarak anlatılmış, evren hakkında bu günkü gerçeklere uymayan düşünceler de ileri sürmüştür. Bunları bir tarafa bırakırsak, yine yaşadığı çağa göre matematikçi yönü çok ağır basar. Pisagor, Mısır'da ve Babil'de çok gezdi. Rahiplerden ilim öğrendi. Çok tanrılı olan o zamanın dini inançlarını benimsedi. Yaşadığı çağı ve aldığı rahip eğitimi göz önüne alınırsa, bunda yadırganacak pek bir şey de yoktur. Oldukça doğaldır. Matematiğe ispat fikrini getiren Pisagor için, sosyal ve şahsi yaşantısı bu kadar eleştiriye değmez. Yalnız, Pisagor ve bazı Yunan filozofları, örneğin, Euclides, Eflatun ve Aristo gibi alimleri, yaşadığı devirlerde, bugün için bilinen ilmi gerçeklerde hataya düşmüşlerdir. Bu filozofların felsefeleri, modern matematiğin kurucusu Descartes (1596-1650) ve Newton (1564-1642) kadar, modern fiziğin kurucusu Galile (1564-1642) ve modern kimyanın kurucusu olan Lavoisier (1743-1794) zamanına kadar iki bin yıllık bir gecikmeye neden olmuşlardır. Eğer Yunan'lılar Euclides, Eflatun ve Aristo yerine Archimedes'i izlemiş olsalardı, Descartes, Newton, Galile ve Lavoisier'in kurdukları modern ilme iki bin yıl önce ulaşır ve bugün içinde bulunduğumuz medeniyete iki bin yıl önce varılırdı. Yani, Archimedes'le Newton, Galile ve Lavoisier arasında tam iki bin yıllık ilmi boşluk vardır. Bu boşlukta kolay kolay doldurulamaz. Bu nedenle, Yunan'lıların medeniyetin ilerlemesine iki bin yıllık bir gecikmeye sebep oldukları bir gerçektir. Avrupa'da uzun yıllar egemen olan ve hüküm süren skolastik düşüncenin temeli Yunanistan'da atılmış ve İtalya'da geliştirilmiştir. Bu nedenle de uzun yıllar bu skolastik düşünce yenilememiştir. Bu uğurda çok sayıda ilim adamı yok edilmiştir. Pisagor'dan önce, geometride, şekillerin aralarındaki bağlılıklar gösterilmeksizin elde edilenler, görenek ve tecrübeye dayanan bir takım kurallardı. Bu nedenle, daha gelen bir yetkili ne demişse o sürüp gidiyordu. Pisagor'un matematiğe ispat fikrini sokması bu yüzden çok önemlidir. O çağlarda çok tanrılı din vardı. Pisagor daha da ileri gidiyor ve "tanrı sayıdır" diyordu. Bu sayılar, 1, 2, 3..., şeklinde bugün bildiğimiz doğal sayılardı. Daha sonra, kendi kendine bir çelişkiye düştüğünü, tamsayıların hatta rasyonel sayıların bile matematiğe yetmediğini, kendi adıyla anılan Pisagor teoremiyle gördü. Buna bir süre karşı da çıktı. Fakat, sonunda bu yenilgiyi kabul etmesini de bilmiştir. Olayda karekök 2 şeklinde rasyonel bir uzunluğun olmaması problemidir. Halbuki Pisagor teoremine göre böyle bir uzunluk vardır. Pisagor'un kuramını yıkan problem, a2=2b2 denklemini gerçekleyen a ve b gibi iki tamsayıyı bulmak olanaksızdır. Pisagor'un karşılaştığı ikinci güçlük, bir karenin kenarının köşegenine bölümünün rasyonel bir sayı olmayışıdır. Bu söylediğimiz, a2=2b2 denkleminde adı geçen olaya eşdeğer olduğu açıktır. Bu problemi bugünkü matematik diliyle söylersek, karekök 2 sayısı irrasyonel bir sayıdır. İşte, karenin köşegeni gibi basit bir uzunluk, Pisagor'un doğal sayılar kümesine meydan okuyarak, Pisagor'un ilk felsefe kuramını yalanlamıştır. Böylece, hiç bir zaman tekrar etmeyen sonsuz ondalıklı olan irrasyonel sayı bulunmuş olunur. Pisagor'un bu buluşu, modern analizin kökünü keşfetmiştir. Bu problem bir yerde, sıfır ile iki sayısı arasını rasyonel sayılarla kaplayabilir miyiz sorusunu doğurur. Yanıt hemen hayır olacaktır. Çünkü, 0

Blaise Pascal


Doğum: 1623 Ölüm: 1662 Pascal, henüz küçük yaşta kendisini gösteren dehalardandır. Henüz 12 yaşındayken, hiç geometri bilgisine sahip olmadığı halde, daireler ve eşkenar üçgenler çizmeye başlamış, bir üçgenin iç açılarının toplamının iki dik açıya eşit olduğunu kendi kendisine bulmuştur. Avukat olan ve matematikle çok ilgilenen babası, onun Yunanca ve Latince’yi iyi öğrenmeden matematiğe yönelmesini istemiyordu. Bu nedenle bütün matematik kitaplarını saklayarak Pascal’ın bu konu ile ilgilenmesini yasaklamıştır. Pascal, çocukluğunda “Geometri neyi inceler?” sorusunu babasına sormuş ve “doğru biçimde şekiller çizmeyi ve şekillerin kısımları arasındaki ilişkileri inceler” cevabını almıştır. Pascal, bu cevaba dayanarak, gizli gizli geometri teoremleri kurmaya ve kanıtlamaya başlamıştır. Sonunda babası, onun yeteneğini anlamış ve ona Euklid’in Elementler’ini ve Apollonius’un Konikler’ini vermiştir. Dil derslerinden arta kalan zamanlarında babasının verdiği kitapları okuyan Pascal, 16 yaşında konikler üzerine bir eser yazmıştır. Bu eserin mükemmelliği karşısında Descartes, eserin Pascal gibi genç biri tarafından yazılmış olduğuna inanmakta güçlük çekmiştir. Pascal, 19 yaşında, aritmetik işlemlerini mekanik olarak yapan bir hesap makinesi icat etmiştir. Pascal yalnızca teorik bilimlerde değil, pratik ve deneysel bilimlerde de yetenekli ve özgün bir araştırmacıydı. 23 yaşında, Toricelli’nin atmosfer basıncı ile ilgili çalışmasını incelemiş ve bir dağa çıkartılan barometredeki civa sütununun düştüğünü, yani yükseğe çıkıldıkça hava basıncının azaldığını göstermiştir. Diş ağrısından uyuyamadığı bir gece rulet oyunu ve sikloid üzerine düşünmüş ve sikloid eğrisinin özelliklerini keşfetmiştir. Pascal, Fermat ile yazışarak, olasılık teorisini kurmuş ve bir binom açılımında katsayıları vermiştir. Pascal Üçgeni”nin keşfi de ona aittir. Pascal, çok genç yaşlarda çok önemli çalışmaları tamamlamış ve matematiğin gelişimine çok önemli katkılar yapmıştır. Pascal, 25 yaşına geldiğinde kendisini felsefe ve dine adamış, 39 yaşında da ölmüştür.