30 Mart 2008 Pazar

Cahit Arf

Ülkemizde matematiğin simgesi haline gelen Cahit ARF 1910 yılında Selanik’te doğdu. 1932 yılında Galatasaray Lisesi’nde matematik öğretmenliği, 1933 yılında İstanbul Üniversitesi Fen Fakültesi’nde profesör yardımcısı (Doçent adayı ) olmuştur. Doktorasını 1938 yılında Almanya’da Göttingen Üniversitesi’nde tamamladı. Daha sonra İstanbul Üniversitesi’ne dönen ARF, 1943 de profesör, 1955’de Ordinaryus Profesör oldu.1964-1965 yılları arasında Fransa’da bulunan Princiton’daki Yüksek Araştırma Enstitüsü’nde konuk öğretim üyesi olarak görev yaptı.

1938 yılından beri Cahit ARF cebir, sayılar teorisi, elastisite teorisi, analiz, geometri ve mühendislik matematiği gibi çok çeşitli alanlarda yaptığı çalışmalarla matematiğe temel katkılarda bulunmuş, yapısal ve kalıcı sonuçlar elde etmiştir.

Bütün Türk matematikçilerine dolaylı veya dolaysız bir şekilde esin kaynağı olmuş, yaptığı uyarılar ve verdiği fikirlerle çevresindeki tüm matematikçilerin ufuklarını genişletmiş ve çalışmalarını yeni bir bakış açısıyla yönlendirmelerini sağlamıştır.

Cahit ARF’ ın ilk çalışması, 1939 yılında Almanya’nın ünlü bir matematik dergisi olan Crelle Journal Dergisi’nde yayınlanmıştır. Cahit ARF çözülebilen cebirsel denklemlerin bir listesini yapmak amacıyla Göttingen’de ünlü matematikçi Hasse’nin doktora öğrencisi oldu. Hasse’nin önerisiyle özel haller problemini çözdü. Cahit ARF bu çalışmasıyla sayılar teorisinde çok özel bir yeri olan lokal cisimlerde dallanma teorisine çok önemli yapısal bir katkıda bulunmuştur. Burada bulduğu sonuçlardan bir bölümü dünya matematik literatüründe “Hasse-Arf Teoremi”olarak geçmektedir.

Bundan sonra uğraştığı problem, matematikte “kuadratik formlar” olarak bilinen konudadır. Uzayda konisel yüzey denklemleri buna basit bir örnek olarak gösterilebilir. Bu konudaki temel problem, kuadratik formların bir takım invaryantlar, yani değişmezler yardımıyla sınıflandırılmasıdır. Bu sınıflandırma Witt adında ünlü bir Alman matematikçi tarafından karekteristiği ikiden farklı olan cisimler için 1937 de yapılmıştır. Karekteristik iki olunca problem çok daha zorlaşıyor ve Witt’in yöntemi uygulanamıyordu. Cahit ARF bu problemle uğraştı ve karekteristiği iki olan cisimler üzerindeki kuadratik formları çok iyi bir biçimde sınıflandırdı. Bunların invaryantlarını, yani değişmezlerini inşa etti. Bu invaryantlar dünya literatüründe “Arf İnvaryantları” olarak geçmektedir. Bu çalışması 1944 yılında Crelle Dergisi’nde yayınlandı ve Cahit ARF ‘ı dünyaya tanıttı.

1945’lere gelindiğinde düzlem bir eğrinin herhangi bir kolundaki çok kat noktaların çok katlılıklarının yalnız aritmetiğe ait bir yöntem ile nasıl hesaplanacağı iyi bilinmekteydi. Düzlem halde algoritmanın başladığı sayılar eğri kolunun parametreli denklemlerinden bilinen bir kanuna göre elde ediliyordu. Genel durumda ise böyle bir sonuç henüz bulunamamıştı. Bu sıralarda İstanbul’da Patrick Du Val adında bir İngiliz matematikçi bulunuyordu. Du Val genel halde algoritmanın başladığı sayılara “karakter” adını vermiş ve eğrinin tüm geometrik özellikleri bilindiği zaman bu karakterlerin nasıl bulunacağını göstermişti. Bunun tersi de doğruydu. Bu karakter bilinirse, eğrinin çok katlılık dizisi, yani geometrik özellikleri de bulunabiliyordu. Burada açık kalan problem ise bir eğrinin denklemleri verildiğinde karakterlerini bulabilmek idi. Cevap düzlem eğriler için bilinmekte, ama yüksek boyutlu uzaylarda bulunan tekil eğriler için bilinmemekte idi. Ayrıca, yüksek boyutlu bir uzayda tanımlanmış bir tekil eğrinin çok katlılık özelliklerini, yani geometrik özelliklerini bozmadan en düşük kaç boyutlu uzaya sokulabileceği de bu problemle beraber düşünülen bir soru idi. Bu çeşit sorular matematiksel bakış açısının temel problemi olan sınıflandırma probleminin eğrilere uygulanması bakımından son derece önemli ve zor sorulardı. Cahit ARF bu problemi 1945’de tamamı ile çözmüş ve tek boyutlu tekil cebirsel kolların sınıflandırılması problemini kapatmıştır. Bu sonucun zorluğu hakkında fikir elde edebilmek için düzgün varyetelerin sınıflandırılması probleminin bugüne kadar 1,2 ve kısmen 3 boyutlu varyeteler için çözüldüğünü tekilliklerinin sınıflandırılması probleminin ise 1 boyutlu varyeteler, eğriler için Cahit ARF tarafından çözüldüğünü göz önüne almak gerekir. Cahit ARF bu problemi çözerken önemini gözlediği ve problemin çözümünde en önemli rolü oynadığını fark ettiğini bazı halkalara “karekteristik halka” adını vermiş ve daha sonra gelen yabancı araştırmacılar bu halkalara “Arf Halkaları” ve bunların kapanışlarına “Arf Kapanışları” adını vermişlerdir. Cahit ARF’ın bu çalışması 1949 ‘da Proceedings of London Matematical Society dergisinde yayınlanmıştır.

Cahit ARF’ın 1940’lı yıllarda yaptığı bu çalışmaların günümüzde hala kullanılıyor olması, onun kalıcılığını ispatlamıştır.

Cahit ARF’ı ilk tanıyan bir kişi onun sadece matematiğe ilgi duyan bir insan olduğu izlenimini edinebilirdi. Cahit ARF için, matematik her şeyin üzerinde ve ötesindeydi. Ancak, onu TÜBİTAK’ın kurulmasında ve gelişmesinde gösterdiği çabayı ve özeni bilenler Cahit ARF’ın öyle içine kapanık, matematikle uğraşan, dış dünya ile ilgilenmeyen bir kişi olmadığını bilirler. Mühendisliğin günlük hayattan doğan problemlerine her zaman ilgi gösterirdi. Ama, bu probleme mutlaka matematiksel bir model bulmaya çalışırdı. Hele bir de pratikten gelen problemi matematik olarak çözüme kavuşursa pek keyiflenirdi. Mustafa İNAN’la böyle bir işbirliği yapmış ve İNAN’ın köprülerde gözlemleyip, araştırdığı bir sorunun matematiksel kesin çözümünü vermiştir. Bu çalışmaları Cahit ARF’a İnönü Ödülü’nü kazandırmıştır.

Üniversitede rektörlük, dekanlık gibi idari görevler almaktan kaçınmıştır. Araştırmacıların bu gibi görevlerden uzak durmaları gerektiği görüşündeydi. Ama uzun yıllar TÜBİTAK Bilim Kurulu Başkanlığı’nı da özveriyle yürütmüştür.

Ortadoğu Teknik Üniversitesi’nde bulunduğu yıllarda yeni ve farklı bir üniversite modelinin ve kültürünün ortaya çıkması için çaba göstermiştir. Akademik dünyanın yapay hiyerarşik ayrımlarıyla alay etmiştir. Genç öğretim üyeleri ve öğrencilerle çok güzel, yararlı ve keyifli diyalog içindeydi. Her zaman üniversite içi çekişmelerden ve politikadan özenle uzak durduğu halde, ODTÜ sistemi tehlikeye düştüğünde duyarlı ve sorumlu bir bilim adamı olarak kendini bir mücadelenin içine atmaktan çekinmemiştir. Bu onurlu mücadele de bile matematiğin aksiyomatik yaklaşımını kimseye farkettirmeden kullanmıştır.

Cahit ARF 1948’de İnönü Ödülü, 1974’de TÜBİTAK Bilim Ödülü, 1980’de İTÜ ve KATÜ Onur Doktorası, 1981’de de ODTÜ Onur Doktorası’nı aldı. Genç yaşta Mainz Akademisi Muhabir Üyeliğine seçildi ve Türkiye Bilimler Akademisi Onur Üyesi oldu.

Cahit ARF matematikte kalıcı izler bırakarak 26 Aralık 1997 ‘de aramızdan ayrılmıştır. Türkiye’de ve dünyada her zaman hatırlanacaktır.

29 Mart 2008 Cumartesi

Kartezyen Çarpım ve Bağıntı

A. SIRALI n Lİ

n tane nesnenin belli bir öncelik sırasına göre düzenlenip, tek bir nesne gibi düşünülmesiyle elde edilen ifadeye sıralı n li denir.

(a, b) sıralı ikilisinde;

a : Birinci bileşen,

b : İkinci bileşendir.

a ¹ b ise, (a, b) ¹ (b, a) dır.

(a, b) = (c, d) ise, (a = c ve b = d) dir.

B. KARTEZYEN ÇARPIM

A ve B herhangi iki küme olmak üzere, birinci bileşeni A kümesinden, ikinci bileşeni B kümesinden alınarak oluşturulan bütün sıralı ikililerin kümesine, A ile B nin kartezyen çarpımı denir.

A kartezyen çarpım B kümesi A x B ile gösterilir.

A x B = {(x, y) : x Î A ve y Î B} dir.

A ¹ B ise, A x B ¹ B x A dır.

C. KARTEZYEN ÇARPIMININ

ÖZELLİKLERİ

i) s(A) = m ve s(B) = n ise

s(A x B) = s(B x A) = m . n dir.

ii) A x (B x C) = (A x B) x C

iii) A x (B È C) = (A x B) È (A x C)

iv) (B È C) x A = (B x A) È (C x A)

v) A x (B Ç C) = (A x B) Ç (A x C)

vı) A x Æ = Æ x A = Æ

vıı)

D. BAĞINTI

A ve B herhangi iki küme olmak üzere A x B nin her alt kümesine A dan B ye bağıntı denir.

Bağıntı genellikle b biçiminde gösterilir.

b Ì A x B ise,
b = {(x, y) : (x, y) Î A x B} dir.

s(A) = m ve s(B) = n ise,

A dan B ye 2m.n tane bağıntı tanımlanabilir.

A x A nın herhangi bir alt kümesine A dan A ya bağıntı ya da A da bağıntı denir.

s(A) = m ve s(B) = n olmak üzere,

A dan B ye tanımlanabilen r elemanlı (r £ m . n) bağıntısayısı

b Ì A x B olmak üzere,

b = {(x, y) : (x, y) Î A x B} bağıntısının tersi

b-1 Ì B x A dır.

Buna göre, b bağıntısının tersi

b-1 = {(y, x) : (x, y) Î b} dır.

E. BAĞINTININ ÖZELLİKLERİ

b, A da tanımlı bir bağıntı olsun.

1. Yansıma Özelliği

A kümesinin bütün x elemanları için (x, x)

b ise, b yansıyandır.

“x Î A için, (x, x) Î b yansıyandır.

2. Simetri Özelliği

b bağıntısının bütün (x, y) elemanları için (y, x) Î b ise, b simetriktir.

“(x, y) Î b için (y, x) Î b ® b simetriktir.

b bağıntısı simetrik ise b = b-1 dir.

s(A) = n olmak üzere, A kümesinde tanımlanabilecek simetrik bağıntı sayısı

s(A) = n olmak üzere, A kümesinde tanımlanabilecek yansıyan bağıntı sayısı 2(n2 - n) dir.

3. Ters Simetri Özelliği

b bağıntısı A kümesinde tanımlı olsun.

x ¹ y iken “(x, y) Î b için (y, x) Ï b ise, b ters simetriktir.

b bağıntısında (x, x) elemanın bulunması ters simetri özelliğini bozmaz.

4. Geçişme Özelliği

b, A da tanımlı bir bağıntı olsun.

“[(x, y) Î b ve (y, z) Î b] için (x, z) Î b ise,

b bağıntısının geçişme özelliği vardır.

F. BAĞINTI ÇEŞİTLERİ

1. Denklik Bağıntısı

b bağıntısı A kümesinde tanımlı olsun.

b; Yansıma, Simetri, Geçişme özelliğini sağlıyorsa denklik bağıntısıdır. b denklik bağıntısı ve (x,y) Î b ise, x denktir. y ye denir.

x º y biçiminde gösterilir.

b denklik bağıntısı olmak üzere A da a elemanına denk olan bütün elemanların kümesine a nın denklik sınıfı denir.

–a biçiminde gösterilir.

Buna göre, a nın denklik sınıfının kümesi,

–a = {y : y Î A ve (a, y) Î b} olur.

2. Sıralama Bağıntısı

A kümesinde tanımlı b bağıntısında; Yansıma, Ters simetri, Geçişme özelliği varsa
bağıntı sıralama bağıntısıdır.

Sayı Basamakları ve Tabanlar

A. SAYI BASAMAĞI

Bir sayıyı oluşturan rakamlardan her birine bu sayının basamağı denir.

Bir doğal sayıda kaç tane rakam varsa sayı o kadar basamaklıdır. 243 üç basamaklı bir sayıdır.

B. ÇÖZÜMLEME

Doğal sayıyı oluşturan rakamların bulunduğu yerdeki değerine basamak değeri denir.

Basamak değerlerinin toplamına o sayının çözümlenmiş biçimi denir.

a b c = 103 . a + 10 . b + c

  • ab = 10 . a + b
  • abc = 100 . a + 10 . b + c
  • aaa = 111 . a
  • ab + ba = 11 . (a + b)
  • ab – ba = 9 . (a – b)
  • abc – cba = 99 . (a – c)

C. TABAN

Bir sayı sisteminde sayının basamak değerlerini göstermek için kullanılan düzene taban denir.

T taban olmak üzere,

(abcd)T = a . T3 + b . T2 + c . T + d dir.

Burada,

  • T, 1 den büyük doğal sayıdır.
  • a, b, c, d rakamları T den küçüktür.
  • Taban belirtmeden kullandığımız sayılar 10 luk tabana göredir.
  • (abc, de)T = a . T 2 + b . T + c + d . T – 1 + e . T – 2 dir.

1. Onluk Tabanda Verilen Sayının Herhangi Bir Tabana Çevrilmesi

Onluk tabanda verilen sayı, hangi tabana çevrilmek isteniyorsa, o tabana bölünür. Bölüm tekrar tabana bölünür. Bu işleme bölüm 0 olana kadar devam edilir.

Ardışık olarak yapılan bu bölmelerden kalanlar sondan başlayarak (ilk kalan son rakam olacak şekilde) sıralanmasıyla istenen sayı oluşturulur.

2. Herhangi Bir Tabanda Verilen Sayının 10 luk Tabana Çevrilmesi

Herhangi bir tabandan 10 luk tabana geçirilirken verilen sayı, ait olduğu tabana göre çözümlenir.

3. Herhangi Bir Tabanda Verilen Sayının Başka Bir Tabanda Yazılması

Herhangi bir tabanda verilen sayı önce 10 tabanına çevrilir. Bulunan değer istenen tabana dönüştürülür.

4. Taban Aritmetiğinde Toplama, Çıkarma, Çarpma İşlemleri

Değişik tabanlarda yapılacak işlemler 10 luk sistemdekine benzer biçimde yapılır.

T tabanında verilen sayılarda toplama ve çarpma işlemleri bilinen cebirsel işlem gibi yapılır, ancak sonuç T den büyük çıkarsa içinden T ler atılıp kalan alınır. Atılan T adedi elde olarak bir sonraki basamağa ilave edilir.

Çıkarma işlemi yapılırken 10 luk sistemdekine benzer biçimde, bir soldaki basamaktan 1 (bir) almak gerektiğinde, bu 1 in aktarıldığı basamağa katkısı tabanın sayı değeri kadardır. Fakat alındığı basamaktaki rakam 1 azalır.

15 Mart 2008 Cumartesi

Bölme ve Bölünebilme

A. BÖLME

A, B, C, K birer doğal sayı ve B ¹ 0 olmak üzere,

  • A ya bölünen, B ye bölen, C ye bölüm, K ya kalan denir.
  • A = B . C + K dır.
  • Kalan, bölenden küçüktür. (K <>Kalan, bölümden (C den) küçük ise, bölen (B) ile bölümün (C) yeri değiştirilebilir.
  • K = 0 ise, A sayısı B ile tam bölünebiliyor denir.

B. BÖLÜNEBİLME KURALLARI

1. 2 İle Bölünebilme

Birler basamağındaki rakamı çift olan sayılar 2 ile tam bölünür.

Tek sayıların 2 ile bölümünden kalan 1 dir.

2. 3 İle Bölünebilme

Rakamlarının sayısal değerleri toplamı 3 ün katı olan sayılar 3 ile tam bölünür.

Bir sayının 3 ile bölümünden kalan, rakamlarının toplamının 3 ile bölümünden kalana eşittir.

3. 4 İle Bölünebilme

Bir sayının onlar basamağındaki rakam ile birler basamağındaki rakamın (son iki
basamak) belirttiği sayı, 4 ün katı olan sayılar 4 ile tam bölünür.

… abc sayısının 4 ile bölümünden kalan bc nin (son iki basamak) 4 ile bölümünden
kalana eşittir.

l… abc sayısının 4 ile bölümünden kalan

c + 2 . b nin 4 ile bölümünden kalana eşittir.

4. 5 İle Bölünebilme

Birler basamağındaki rakam 0 veya 5 olan sayılar 5 ile tam bölünür.

Bir sayının 5 ile bölümünden kalan, o sayının birler basamağındaki rakamın 5 ile bölümünden kalana eşittir.

5. 7 İle Bölünebilme

(n + 1) basamaklı anan-1 … a4a3a2a1a0 sayısının 7 ile tam bölünebilmesi için,

k Î Z olmak üzere,

(a0 + 3a1 + 2a2) – (a3 + 3a4 + 2a5) + … = 7k olmalıdır.

Ü Birler basamağı a0, onlar basamağı a1, yüzler basamağı a2, … olan sayının 7 ile bölümünden kalan (a0 + 3a1 + 2a2) – (a3 + 3a4 + 2a5) + … işleminin sonucunun 7 ile bölümünden kalana eşittir.

6. 8 İle Bölünebilme

Yüzler basamağındaki, onlar basamağındaki ve birler basamağındaki rakamların (son üç rakamın) belirttiği sayı 8 in katı olan sayılar 8 ile tam bölünür.

3000, 3432, 65104 sayıları 8 ile tam bölünür.

Ü Birler basamağı c, onlar basamağı b, yüzler
basamağı a, … olan sayının 8 ile bölümünden kalan c + 2 . b + 4 . a toplamının
8 ile bölümünden kalana eşittir.

7. 9 İle Bölünebilme

Rakamlarının toplamı 9 un katı olan sayılar 9 ile tam bölünür.

Bir sayının 9 ile bölümünden kalan, o sayının rakamlarının toplamının 9 ile bölümünden kalana eşittir.

8. 10 İle Bölünebilme

Birler basamağındaki rakamı 0 (sıfır) olan sayılar 10 ile tam bölünebilir. Bir sayının birler basamağındaki rakam o sayının 10 ile bölümünden kalandır.

9. 11 İle Bölünebilme

(n + 1) basamaklı anan–1 … a4a3a2a1a0 sayısının 11 ile tam bölünebilmesi için

(a0 + a2 + a4 + …) – (a1 + a3 + a5 + …)… = 11 . k ve k Î Z olmalıdır.

® (n + 1) basamaklı anan–1 … a4a3a2a1a0
sayı-sının 11 ile bölümünden kalan (a0 + a2 + a4 + …) – (a1 + a3 + a5 + …)… işleminin sonucunun 11 ile bölümünden kalana eşittir.

Aralarında asal iki sayıya bölünebilen bir sayı, bu iki sayının çarpımına da tam bölünür.

  • 2 ve 3 ile tam bölünen sayılar 6 ile de bölünür.
  • 3 ve 4 ile tam bölünen sayılar 12 ile de bölünür.

C. BÖLEN KALAN İLİŞKİSİ

A, B, C, D, E, K1, K2 uygun koşullarda birer doğal sayı olmak üzere,

A nın C ile bölümünden kalan K1 ve

B nin C ile bölümünden kalan K2 olsun.

Buna göre,

  • A . B nin C ile bölümünden kalan K1 . K2 dir.
  • A ± B nin C ile bölümünden kalan K1 ± K2 dir.
  • D . A nın C ile bölümünden kalan D . K1 dir.
  • AE nin C ile bölümünden kalan K1E
    dir.

Burada kalan değerler bölenden (C den) büyük ise, tekrar C ile bölünerek kalan bulunur.

D. ÇARPANLAR İLE BÖLÜM

Bir A doğal sayısı B . C ile tam bölünüyorsa A sayısı B ve C doğal sayılarıyla
da bölünebilir. Fakat bu ifadenin karşıtı (A sayısı B ile ve C ile tam bölünüyorsa
A sayısı B . C ile tam bölünür.) her zaman doğru değildir.

  • 144 sayısı 2 . 6 = 12 ile tam bölünür ve 144 sayısı 2 ile ve 6 ile de tam
    bölünür.
  • 6 sayısı 2 ile ve 6 ile tam bölünür. Fakat 6 sayısı 2 . 6 = 12 ile tam bölünemez.

E. BİR TAM SAYININ TAM BÖLENLERİ

Bir tam sayının, asal sayıların çarpımı biçiminde yazıl-masına bu sayının asal çarpanlarına ayrılması denir.

a, b, c birbirinden farklı asal sayılar ve m, n, k pozitif tam sayılar olmak
üzere,

A = am . bn . ck olsun.

  • A yı tam bölen asal sayılar a, b, c dir.
  • A sayısının pozitif tam bölenlerinin sayısı: (m + 1) . (n + 1) . (k + 1) dir.
  • A sayısının pozitif tam bölenlerinin ters işaret-lileri de negatif tam bölenidir.
  • A sayısının tam sayı bölenleri sayısı:

2 . (m + 1) . (n + 1) . (k + 1) dir.

  • A sayısının tam sayı bölenleri toplamı 0 (sıfır) dır.
  • A sayısının pozitif tam bölenlerinin toplamı :

  • A sayısının asal olmayan tam sayı bölenlerinin sayısı, A nın tam sayı bölenlerinin sayısından A nın asal bölenlerinin sayısı çıkarılarak bulunur.
  • A nın asal olmayan tam sayı bölenleri toplamı – (a + b + c) dir.
  • A sayısından küçük A ile aralarında asal olan sayıların sayısı:

  • A sayısını pozitif tam sayı bölenlerinin çarpımı:

EBOB - EKOK

A. EN BÜYÜK ORTAK BÖLEN (EBOB YA DA OBEB)

En az biri sıfırdan farklı iki ya da daha fazla tam sayının ortak bölenlerinin en büyüğüne bu sayıların ortak bölenlerinin en büyüğü denir ve EBOB biçiminde gösterilir.

EBOB bulunurken verilen sayılar asal çarpanlarına ayrılır. Ortak olan asal çarpanlardan
büyük olmayan üslülerin çarpımı bu sayıların EBOB'unu verir.

  • Eğer a ¹ 0 veya b ¹ 0 ise EBOB tanımlı olup EBOB(a, b) ³ 1 dir.
  • a = b = 0 ise EBOB(a, b) tanımsızdır.

B. EN KÜÇÜK ORTAK KAT (EKOK ya da OKEK)

Hepsi sıfırdan farklı iki ya da daha fazla tam sayının pozitif ortak katlarının en küçüğüne bu sayıların ortak katlarının en küçüğü denir ve EKOK biçiminde gösterilir.

EKOK bulunurken verilen sayılar asal çarpanlarına ayrılır. Ortak olan asal çarpanlardan küçük olmayan üslülerin çarpımı bu sayıların EKOK'unu verir.

  • a ve b tam sayılarından en az biri sıfır ise, EKOK(a, b) tanımsızdır.

a ve b pozitif tamsayı, a £ b ise,

  • EBOB(a, b) £ a £ b £ EKOK(a, b)
  • a . b = EBOB(a, b) . EKOK(a, b)
  • a ile b aralarında asal ise, EBOB(a, b) = 1
  • kesirleri ile tam bölünen en küçük pozitif kesir

  • a ve b pozitif tam sayı olmak üzere,


  • İki pozitif tam sayının çarpımı, bu sayıların EBOB' u ile EKOK'unun çarpımına eşittir. Fakat ikiden fazla pozitif tam sayının çarpımı, bu sayıların EBOB'u ile EKOK'unun çarpımına her zaman eşit değildir.
  • A pozitif tam sayısı a . b ile tam bölünebiliyor ve EKOK(a, b) = x ise, A sayısı x ile tam bölünür.

9 Mart 2008 Pazar

Modüler Aritmetik

a, b, m birer tam sayı ve m > 1 olmak üzere, tam sayılar kümesi üzerinde tanımlanan,

b = {(a, b) : m, (a – b) yi tam böler} bir denklik bağıntısıdır. b denklik bağıntısı olduğundan her (a, b) Î b için,
a º b (mod m) biçiminde yazılır ve m modülüne göre a sayısı b ye denktir denir.

a º b (mod m)

a º b + mk, k Î Z

Tam sayıların m sayma sayısı ile bölünmesiyle elde edilen kalanlar: 0, 1, 2, 3, 4, … , (m – 1) dir.
Her tam sayı m ile bölündüğünde hangi kalanı veriyorsa o kalana denktir. Bu kalanların her biri, belirlediği denklik sınıfının temsilci elemanı olarak alınırsa, denklik sınıfları

0, 1, 2, 3, 4, … , (m – 1) dir.

Bu denklik sınıflarının kümesine m nin kalan sınıflarının kümesi denir ve Z/m
biçiminde gösterilir.

Buna göre, Z/m = {0,1,2,3,4, … , (m– 1)} dir.

Ü n bir sayma sayısı ve k bir tam sayı ve

a º b (mod m)
c º d (mod m) olmak üzere,

1) a + c º b + d (mod m)

2) a – c º b – d (mod m)

3) a . c º b . d (mod m)

4) an º bn (mod m)

5) a – b º 0 (mod m)

6) k . a º k . b (mod m) dir.

7) n sayma sayısı; a, b, m sayılarının ortak böleni ise



a ile m ve b ile m aralarında asal olmak üzere,





Z/m deki işlemler (mod m) ye göre yapılır.

x, m nin tam katı olmayan pozitif bir tam sayı ve m bir asal sayı ise,

xm – 1 º 1 (mod m) dir.

x in (m – 1) den daha küçük kuvvetinde de 1 bulunabilir.

x ile m aralarında asal sayılar olmak üzere, m nin asal çarpanlarına ayrılmış biçimi m = ak . b r . c p ve





xT º 1 (mod m) dir.

m asal sayı ise ,

(m - 1)!+1 º 0 (mod n) dir.
























3 Mart 2008 Pazartesi

Kümeler


Küme, nesnelerin iyi tanımlanmış listesidir. Kümeler genellikle A, B, C gibi büyük harflerle gösterilir.




Kümeyi oluşturan ögelere, kümenin elemanı denir. a elemanı A kümesine ait ise,

a Î A biçiminde yazılır. “a, A kümesinin elemanıdır.” diye okunur. b elemanı A kümesine ait değilse, b Ï A biçiminde yazılır. “b, A kümesinin
elemanı değildir.”
diye okunur.


Kümede, aynı eleman bir kez yazılır.


Elemanların yerlerinin değiştirilmesi kümeyi değiştirmez.


A kümesinin eleman sayısı s(A) ya da n(A) ile gösterilir.



B. KÜMELERİN GÖSTERİLİŞİ



Kümenin elemanları aşağıdaki 3 yolla gösterilebilir.


1. Liste Yöntemi


Kümenin elemanları { } sembolü içine, her bir elemanın arasına virgül konularak yazılır.

A = {a, b, {a, b, c}} Ş s(A) = 3 tür.


2. Ortak Özellik Yöntemi


Kümenin elemanları, daha somut ya da daha kolay algılanır biçimde gerektiğinde sözel, gerektiğinde matematiksel bir ifade olarak ortaya koyma biçimidir.


A = {x : (x in özelliği)}


Burada “x :” ifadesi “öyle x lerden oluşur ki” diye okunur.

Bu ifade “x ” biçiminde de yazılabilir.



3. Venn Şeması Yöntemi

Küme, kapalı bir eğri içinde her eleman bir nokta ilegösterilip noktanın yanına elemanın adı yazılarak gösterilir.



Bu gösterime Venn Şeması ile gösterim denir.









C. EŞİT KÜME, DENK KÜME

Aynı elemanlardan oluşan kümelere eşit kümeler denir.
Eleman sayıları eşit olan kümelere denk kümeler denir.

A kümesi B kümesine eşit ise A = B,
C kümesi D kümesine denk ise C º D biçiminde gösterilir.
Eşit olan kümeler ayın zamanda denktir. Fakat denk kümeler eşit olmayabilir.

D. BOŞ KÜME

Hiç bir elemanı olmayan kümeye boş küme denir.
Boş küme { } ya da Æ sembolleri ile gösterilir.

Eşit olan kümeler ayın zamanda denktir. Fakat denk kümeler eşit olmayabilir.
{.} ve {0} kümeleri boş küme olmayıp birer elemana sahip iki denk kümedir.
{Æ} ve {0} kümeleri boş küme olmayıp birer elemana sahip iki denk kümedir.
{Æ} ve {0} kümeleri boş küme olmayıp birer elemana sahip iki denk kümedir.

E. ALT KÜME - ÖZALT KÜME

1. Alt Küme

A kümesinin her elemanı, B kümesinin de elemanı ise A ya B'nin alt kümesi denir.

A kümesi B kümesinin alt kümesi ise A Ì B biçiminde gösterilir.
A kümesi B kümesinin alt kümesi ise B kümesi A kümesini kapsıyor denir. B ÉA biçiminde gösterilir.
C kümesi D kümesinin alt kümesi değilse C Ë D biçiminde gösterilir.

2. Özalt Küme

Bir kümenin, kendisinden farklı bütün alt kümelerine o kümenin özalt kümeleri denir.

3. Alt Kümenin Özellikleri

1) Her küme kendisinin alt kümesidir.
A Ì A

2) Boş küme her kümenin alt kümesidir.

Æ Ì A

3) (A Ì B ve B Ì A) Û A = B dir.

4) (A Ì B ve B Ì C) Ş A Ì C dir.
5) n elemanlı bir kümenin alt kümelerinin sayısı 2nve özalt kümelerinin sayısı 2n – 1 dir.

6) n elemanlı bir kümenin r tane (n ³ r) elemanlı alt kümelerinin sayısı













F. KÜMELERLE YAPILAN İŞLEMLER

1. Kümelerin Birleşimi

A nın elemanlarından veya B nin elemanlarından oluşan kümeye bu iki kümenin birleşim kümesi denir ve A È B biçiminde gösterilir.
A È B = {x : x Î A veya x Î B} dir.























2. Birleşim Işleminin Özellikleri

1) A È Æ = Ai

2) A È A = A

3) A ÈB = B È A

4) A È (B È C) = (A È B) È Cv) A Ì B ise, A È B = B

5) A È B = Æ ise, (A = Æ ve B = Æ) dir.


3. Kümelerin Kesişimi


A ve B kümesinin ortak elemanlarından oluşan kümeye A ile B nin kesişim kümesi denir ve A Ç B biçiminde gösterilir.

A Ç B = {x : x Î A ve x Î B} dir.






















4. Kesişim Işleminin Özellikleri

1) A Ç Æ = Æ

2) A Ç A = A

3) A Ç B = B Ç A

4) (A Ç B) Ç C = A Ç (B Ç C)

5) A Ç (B È C) = (A Ç B) È (A Ç C)

6) A È (B Ç C) = (A È B) Ç (A È C)

G. EVRENSEL KÜME

Üzerinde işlem yapılan, bütün kümeleri kapsayan kümeye, evrensel küme denir. Evrensel küme genellikle E ile gösterilir.












H. BİR KÜMENİN TÜMLEYENİ

Evrensel kümenin elemanı olup, A kümesinin elemanı olmayan elemanlardan oluşan kümeye A nın tümleyeni denir ve A ya da A’ ile gösterilir.

A = {x : x Î E ve x Ï A, A Ì E} dir.

Tümleyenin Özellikleri

1) E = Æ

2) Æ = E

3) ()= A

4) A È A = E ve A Ç A = Æ

5) A È B = A Ç B

6) A Ç B = A ÈB

7) E È A = E ve E Ç A = A

8) A Ì B ise, B Ì A dir.


İKİ KÜMENİN FARKI


A kümesinde olup, B kümesinde olmayan elemanların kümesine A fark B kümesi denir. A fark B kümesi A – B ya da A \ B biçiminde gösterilir.

A – B = {x : x Î A ve x Ï B} dir.


Farkla İlgili Özellikler


A, B, C kümeleri E evrensel kümesinin alt kümeleri olmak üzere,

1)E – A = A

2)A – B = A Ç B

3) A – B = A È B dir.


ELEMAN SAYISI

A, B, C herhangi birer küme olmak üzere,

1) s(A È B) = s(A) + s(B) – s(A Ç B)

2) s(A È B È C) = s(A) + s(B) + s(C) – s(A Ç B) – s(A Ç C) – s(B Ç C) + s(A Ç B Ç C)

3) s(A È B) = s(A – B) + s(A Ç B) + s(B – A)


4) a + b + c + d tane öğrencinin bulunduğu bir sınıfta voleybol oynayan öğrencilerin sayısı s(V) = b + c, tenis oynayan öğrencilerin sayısı s(T) = a + b, voleybol ve tenis oynayan öğrencilerin sayısı s(T Ç V) = b olsun.


Tenis veya voleybol oynayanların sayısı:


s(T È V) = a + b + c


Tenis ya da voleybol oynayanların sayısı:


s(T – V) + s(V – T) = a + c


Sadece tenis oynayanların sayısı:


s(T – V) = a


Tenis oynamayanların sayısı:


s(T) = c + d


Bu iki oyundan en az birini oynayanların sayısı:


s(T È V) = a + b + c


Bu iki oyundan en çok birini oynayanların sayısı:


s(A Ç B) = s(A È B) + s(T – V) + s(V – T) = d + a + c


Bu iki oyundan hiç birini oynamayanların sayısı:


s(A ÈB) = d





Matematik Tarihi

Matematik insanlik tarihinin en eski bilimlerinden biridir. Çok eskiden, matematik sayiların ve şekillerin ilmi olarak tanımlanirdi. Matematik de, diğer bilim dallari gibi, geçen zaman içinde büyük bir gelişme gösterdi; artik onu bir kaç cümle ile tanımlamak mümkün değildir.

Matematik bir yönüyle, resim ve müzik gibi bir sanattır. Matematikçilerin büyük çoğunluğu onu bir sanat olarak icra ederler. Bu açıdan bakinca, yapılan bir işin, geliştirilen bir teorinin, matematik dişinda şu ya da bu işe yaraması onları pek ilgilendirmez. Onlar için önemli olan, yapılan işin derinliği, kullanılan yöntemlerin yeniliği, estetik değeri ve matematiğin kendi içinde bir işe yaramasıdır.

Matematik, başka bir yönüyle, bir dildir. Eğer bilimin gayesi evreni; evrende olan her şeyi anlamak, onlara hükmetmek ve yönlendirmek ise, bunun için tabiatın kitabını okuyabilmemiz gerekir. Tabiatın kitabi ise, Gaile’nin çok aktif alan sözleri ile, matematik dilinde yazilmiştir; onun harfleri geometrinin şekilleridir. Bunları anlamak ve yorumlayabilmek için matematik dilini bilmemiz gerekir.

Matematik, başka bir yönüyle de satranç gibi entellektüel bir oyundur. Kimi matematikçiler de ona bir oyun gözüyle bakarlar.

Matematik, kullanıcısı için ise sadece bir araçtır ; ya da yaptıklarını ifade edebildikleri bir dildir.

Matematiğin ne olduğunu, onun içine girdikten sonra, bilgimiz ölçüsünde ve ilgimiz yönünde, anlar ve algılariz. Artık matematik her hangi bir insan hükmedebileceği boyutların çok çok ötesindedir.

Matematik sözcüğü, ilk kez, M.Ö. 550 lerde, Pisagor okulu üyeleri tarafından kullanılmıştır. Yazılı literatüre girmesi, M.Ö. 380 lerde Platon’ la olmuştur. Kelime manası “öğrenilmesi gereken şey”, yani, bilgidir. Bu tarihlerden önceki yıllarda, matematik kelimesi yerine, yer ölçümü manasına gelen, geometri ya da eski dillerde ona eşdeger olan sözcükler kullanılıyordu.

Matematiğin nerede ve nasıl başladığı hakkında da kesin bir seş söylemek mümkün değildir. Dayanak olarak yorum gerektiren arkeolojik bulguları değil de, yorum gerektirmeyecek kadar açık yazılı belgeleri alırsak, matematiğin M.Ö. 3000 –2000 yılları arasında Mısır ve Mezopotamya’da basladığını söyleyebiliriz. Heredot’a ( M.Ö. 485-415) göre, matematik Mısır’da başlamıştır. Bildiğiniz gibi, Mısır topraklarının %97 si tariıma elverişli değildir; Mısır’a hayat veren, Nil deltasını oluşturan %3 lük kısımdır. Bu nedenle, bu topraklar son derece değerlidir. Oysa, her sene yaşanan Nil nehrinin neden olduğu taşkınlar sonucunda, toprak sahiplerinin arazilerinin hudutları belirsizleşmektedir. Toprak sahipleri de sahip oldukları toprakla orantılı olarak vergi ödedikleri için, her taskindan sonra, devletin bu işlerle görevli “geometricileri” gelip, gerekli ölçümleri yapıp, toprak sahiplerine bir önceki yılda sahip oldukları toprak kadar toprak vermeleri gerekmektedir. Heredot geometrinin bu ölçüm ve hesapların sonucu olarak oluşmaya başladiğini söylemektedir.

Matematiğin doğuşu hakkında ikinci bir görüş de, Aristo (M.Ö. 384-322) tarafından ileri sürülen şu görüştür. Aristo’ ya göre de matematik Mısır’da dogmustur. Ama Nil taşmalarının neden oldugu ölçme-hesaplama ihtiyacından degil, din adamlarının, rahiplerin can sıkıntısından doğmuştur. O tarihlerde, Mısır gibi ülkelerin tek entelektüel sınıfı rahip sınıfıdır. Bu sınıfın geçimi halk veya devlet tarafından sağlandığı için, entelektüel uğraşlara verecek çok zamanları olmaktadir. Kendilerini meşgul etmek için, başkalarının satranç, briç, vb. oyunları icat ettikleri gibi onlar da geometri ve aritmetiği, yani o zamanin matematiğini icat etmişlerdir.

Bu her iki görüş de doğru olabilir; rahipler geometricilerin işini kolaylaştirmak istemiş, ya da dağıtımın adil yapıldığını kontrol için, üçgen, yamuk gibi bazi geometrik şekillerdeki arazilerin alanlarının nasıl hesaplanacağını bulmuş ve bu şekilde geometrinin doğmasina neden olmuş da olabilirler.